메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국아동가족복지학회(구 한국가족복지학회) 한국가족복지학 한국가족복지학 제24권 제2호
발행연도
2019.1
수록면
251 - 269 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study is aimed at identifying trends in research on community care and the knowledge structure of community care related research in a research paper published in the journal 'community care', which is the policy of the Ministry of Health and Welfare in 2018, and through network analysis and connectivity analysis using Word2vec, the research trends of 'community care' are improved. In this study, keyword extraction and analysis were conducted using word-clouding of the Python program in the journal Community Care, and the data were collected using Word2Vec of Deep Learning Technique (RNN) for the centrality and cohesion analysis of Semantic network analysis. The results of the study are as follows. First, the words frequently appearing through word-clouding were in the order of 'service', 'care', 'community', 'social', 'the aged', 'region', 'research', 'welfare', ' facilities', 'an analysis' and 'policy'. Second, 'Service, 'Community', 'Care', 'Social', 'the aged' and 'research' were evaluated as the most important nodes after visualizing the network using the connection strength between words obtained from Word2vec for 50 major keywords of the frequency of emergence. The words 'build', 'social', 'institutional', 'recuperation', 'region', 'United Kingdom', 'policy', insurance' and 'disabled' were found to be highly interconnected. Third, based on the network model's assessment of the centrality, 'social ', 'United Kingdom' 'disabled', 'policy' and 'Korea' were found to have a high centrality, the words 'treatment', 'Korea' service', 'the aged' and 'recuperation' and 'nearly' words 'social' and 'system', 'United Kingdom' were investigated. Finally, the groupings of research subjects using intuitive clustering over the network confirmed that they were clustered into three groups: the service sector, the treatment, the center, and the policy and the plan, and the aspects of community and welfare were revealed.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0