메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국ITS학회 한국ITS학회 논문지 한국ITS학회 논문지 제18권 제4호
발행연도
2019.1
수록면
58 - 70 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
보행자 교통사고의 경우 사고 발생 시 사망사고로 연결되는 위험성이 있다. 국내 지능형교통시스템(ITS)은 질 좋은 교통 인프라를 구축하고 있음에도 불구하고, 거의 교통정보 수집에만 이용되고 있어, 위험상황 발생 시 지능적인 위험 요소 분류가 이루어지지 않고 있다. 본 연구에서 제안하는 시스템의 주요 구성 요소인 CNN 기반의 보행자 탐지 분류 모델의 경우 제한적인 환경에서 설치 운영되는 것을 가정하여 임베디드 시스템 기반으로 구현되었다. 기존YOLO의 인공신경망 모델을 개선하여 My-Tiny-Model3라는 새로운 모델을 생성하였고, 20,000 번의 반복 학습 기준으로 평균 정확도 86.29%와 21.1 fps의 실시간 탐지 속도 결과를 보였다. 그리고, 이러한 탐지 시스템을 기반으로 하여 ITS 체계와 연계 가능한 시스템 구현 및 프로토콜 연동 시나리오를 구성하였다. 본 연구를 통해 기존 ITS 체계와 연동하는 보행자 사고 방지시스템을 구현한다면, 새로운 인프라 구축비용을 절감하고 보행자 교통사고 발생률을 줄이는데 도움이 될 것이다. 또한, 기존의 시스템 감시인력 소요에 따른 비용 또한 줄일 수 있을 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0