메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
송수호 (선문대학교) 현훈범 (선문대학교) 이현 (선문대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.1
발행연도
2017.1
수록면
44 - 50 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
보행자 검출은 수년간 광범위하게 연구된 문제이며, 자율주행 자동차와 운전자 보조시스템에서 매우 중요한 역할을 차지하고 있다. 특히, 계층적 분류기[1]와 Histogram of Gradient[2]특징벡터 등 영상 기반의 보행자 검출기법과 ConvNet같이 deep model을 이용하여 검출하는 기법들이 연구되었고 검출성능 은 꾸준히 상승하였다. 하지만 보행자 검출은 작은 오차에도 생명과 연관된 문제를 야기할 수 있기 때문에, 자율주행 시스템의 보행자검출 오차율은 더욱 낮출 필요가 있다. 따라서 본 연구에서는 Faster R-CNN 응용 기법에 새로 개발한 데이터 학습 모델을 적용하여 보행자 검출 오류를 줄이는 기법을 제안한다. 그리고 기존에 제안된 모델들과 비교를 통해, 보행자 검출에 있어 제안된 방법의 우수성을 보이고자 한다.

목차

요약
Abstract
1. 서론
2. 보행자 검출 기법
3. Faster R-CNN 응용기법
4. 실험
5. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0