메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제56권 제5호
발행연도
2019.1
수록면
1,187 - 1,198 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $R$ be a domain with its field $Q$ of quotients. An $R$-module $M$ is said to be weak $w$-projective if $\Ext^1_R(M,N)=0$ for all $N\in \mathcal{P}^{\dag}_w$, where $\mathcal{P}^{\dag}_w$ denotes the class of $\GV$-torsionfree $R$-modules $N$ with the property that $\Ext^k_R(M,N)=0$ for all $w$-projective $R$-modules $M$ and for all integers $k\geq 1$. In this paper, we define a domain $R$ to be $w$-Matlis if the weak $w$-projective dimension of the $R$-module $Q$ is $\leq1$. To characterize $w$-Matlis domains, we introduce the concept of $w$-Matlis cotorsion modules and study some basic properties of $w$-Matlis modules. Using these concepts, we show that $R$ is a $w$-Matlis domain if and only if $\Ext^k_R(Q,D)=0$ for any $\mathcal{P}^{\dag}_w$-divisible $R$-module $D$ and any integer $k\geq1$, if and only if every $\mathcal{P}^{\dag}_w$-divisible module is $w$-Matlis cotorsion, if and only if w.$w$-$\pd_RQ/R\leq1$.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0