메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jinyeong Oh (Soonchunhyang University) Jimin Lee (Soonchunhyang University) Daesungjin Kim (Asan Middle School) Bo-Young Kim (Asan Middle School) Jihoon Moon (Soonchunhyang University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제11호(통권 제236호)
발행연도
2023.11
수록면
29 - 42 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 서울, 부산, 인천과 같은 대한민국의 주요 도시들을 대상으로 일사량 예측 정확도를 향상하기 위한 방법론을 제안한다. 제안한 방법론은 먼저 GAN, CTGAN, Copula GAN, WGANGP, TVAE 등 다섯 가지 생성 모델을 이용하여 기존 학습 데이터와 유사한 독립 변수들을 생성한다. 다음으로 모델 학습에서의 데이터 편향성을 개선하고자, 생성한 독립 변수들에서 각각 랜덤 포레스트와 심층 신경망을 통해 종속 변숫값을 도출하여 학습 데이터 셋을 구축하고, 이를 기존 학습데이터 셋과 결합하여 예측 모델을 구성한다. 실험 결과, 증강된 데이터 셋으로 학습한 모델들은 기존 데이터 셋으로 학습한 모델들보다 향상된 성능을 나타내었다. 특히 CTGAN은 복잡한 다변량 데이터 관계를 효과적으로 다루는 메커니즘으로 인해 우수한 결과를 도출하였으며, 생성된 데이터는 일사량의 다양한 변화와 실제 변동성과 효과적으로 반영하였다. 제안한 방법론은 고품질의 생성 데이터로 학습 데이터를 증강함으로써, 데이터 부족 현상 문제를 다룰 수 있을 뿐만 아니라 지속 가능한 발전을 위한 태양광 발전 시스템 운영에도 이바지할 수 있을 것으로 기대한다.

목차

Abstract
요약
I. Introduction
II. Methodology
III. Results
IV. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0