메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전기전자재료학회 전기전자재료학회논문지 전기전자재료학회논문지 제23권 제11호
발행연도
2010.1
수록면
831 - 836 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, Plasma Enhanced Chemical Vapor Deposition (PECVD) SiO2 film properties are modeled using statistical analysis and neural networks. For systemic analysis, Box-Behnken's 3 factor design of experiments (DOE) with response surface method are used. For characterization, deposited film thickness and film stress are considered as film properties and three process input factors including plasma RF power, flow rate of N2O gas, and flow rate of 5% SiH4 gas contained at N2 gas are considered for modeling. For film thickness characterization, regression based model showed only 0.71% of root mean squared (RMS) error. Also, for film stress model case, both regression model and neural prediction model showed acceptable RMS error. For sensitivity analysis, compare to conventional fixed mid point based analysis, proposed sensitivity analysis for entire range of interest support more process information to optimize process recipes to satisfy specific film characteristic requirements

목차

등록된 정보가 없습니다.

참고문헌 (5)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0