메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제47권 제2호
발행연도
2015.1
수록면
176 - 186 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Pattern classifications have become important tools for fault diagnosis in nuclear powerplants (NPP). However, it is often difficult to obtain training data under fault conditionsto train a supervised classification model. By contrast, normal plant operating data canbe easily made available through increased deployment of supervisory, control, and dataacquisition systems. Such data can also be used to train classification models to improvethe performance of fault diagnosis scheme. In this paper, a fault diagnosis scheme based on semisupervised classification (SSC)scheme is developed. In this scheme, new measurements collected from the plant areintegrated with data observed under fault conditions to train the SSC models. The trainedmodels are subsequently applied to new measurements for fault diagnosis. In comparisonwith supervised classifiers, the proposed scheme requires significantly fewer data collectedunder fault conditions to train the classifier. The developed scheme has been validated using different fault scenarios on a desktopNPP simulator as well as on a physical NPP simulator using a graph-based SSC algorithm. All the considered faults have been successfully diagnosed. The results have demonstrated that SSC is a promising tool for fault diagnosis in NPPs

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0