메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제14권 제3호
발행연도
2018.1
수록면
709 - 726 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Database classification is an important preprocessing step for the multi-database mining (MDM). In fact,when a multi-branch company needs to explore its distributed data for decision making, it is imperative toclassify these multiple databases into similar clusters before analyzing the data. To search for the bestclassification of a set of n databases, existing algorithms generate from 1 to (n2–n)/2 candidate classifications. Although each candidate classification is included in the next one (i.e., clusters in the current classification aresubsets of clusters in the next classification), existing algorithms generate each classification independently,that is, without taking into account the use of clusters from the previous classification. Consequently, existingalgorithms are time consuming, especially when the number of candidate classifications increases. Toovercome the latter problem, we propose in this paper an efficient approach that represents the problem ofclassifying the multiple databases as a problem of identifying the connected components of an undirectedweighted graph. Theoretical analysis and experiments on public databases confirm the efficiency of ouralgorithm against existing works and that it overcomes the problem of increase in the execution time.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0