메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The object classification using the images’ contents is a big challenge in computer vision. The superpixels’information can be used to detect and classify objects in an image based on locations. In this paper, weproposed a methodology to detect and classify the image's pixels' locations using enhanced bag of words(BOW). It calculates the initial positions of each segment of an image using superpixels and then ranks itaccording to the region score. Further, this information is used to extract local and global features using ahybrid approach of Scale Invariant Feature Transform (SIFT) and GIST, respectively. To enhance theclassification accuracy, the feature fusion technique is applied to combine local and global features vectorsthrough weight parameter. The support vector machine classifier is a supervised algorithm is used forclassification in order to analyze the proposed methodology. The Pascal Visual Object Classes Challenge 2007(VOC2007) dataset is used in the experiment to test the results. The proposed approach gave the results inhigh-quality class for independent objects’ locations with a mean average best overlap (MABO) of 0.833 at1,500 locations resulting in a better detection rate. The results are compared with previous approaches and itis proved that it gave the better classification results for the non-rigid classes.

목차

등록된 정보가 없습니다.

참고문헌 (40)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0