메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제5권 제2호
발행연도
2009.1
수록면
105 - 116 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
To solve the general problems surrounding the application of genetic algorithms in stereo matching, two measures are proposed. Firstly, the strategy of simplified population-based incremental learning (PBIL) is adopted to reduce the problems with memory consumption and search inefficiency, and a scheme for controlling the distance of neighbors for disparity smoothness is inserted to obtain a wide-area consistency of disparities. In addition, an alternative version of the proposed algorithm, without the use of a probability vector, is also presented for simpler set-ups. Secondly, programmable graphics-hardware (GPU) consists of multiple multi-processors and has a powerful parallelism which can perform operations in parallel at low cost. Therefore, in order to decrease the running time further, a model of the proposed algorithm, which can be run on programmable graphics-hardware (GPU), is presented for the first time. The algorithms are implemented on the CPU as well as on the GPU and are evaluated by experiments. The experimental results show that the proposed algorithm offers better performance than traditional BMA methods with a deliberate relaxation and its modified version in terms of both running speed and stability. The comparison of computation times for the algorithm both on the GPU and the CPU shows that the former has more speed-up than the latter, the bigger the image size is.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0