메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
인문사회과학기술융합학회 예술인문사회 융합 멀티미디어 논문지 예술인문사회 융합 멀티미디어 논문지 제8권 제8호
발행연도
2018.1
수록면
845 - 852 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
마이어-쉔베르거와 쿠키어(Mayer-Schönberger and Cukier, 이하 MSC)는, 빅 데이터의 세계에서는 인과성보다 상관성이 실용적으로 더 유용하고 효율적이라고 주장한다.[4] 더 나아가, 빅 데이터의 세계에서는 인과성에 토대한 분석이나 예측이 상관성에 토대한 분석이나 예측에 밀려 주목받지 않거나 도태될 것이라 주장한다. 이 글에서 필자는, 상관성이 빅 데이터의 현상을 분석하고 이를 토대로 미래를 예측하는 데에 충분하다는 MSC의 논증들을 비판적으로 검토한다. 2장에서는 빅 데이터의 세계 에서 상관성이 우월하다는 MSC의 논증을 소개한다. 3장에서는 상관성은 그 자체만으로 충분히 실용 적이고 유용하다는 MSC의 논증을 비판한다. 상관성과 인과성의 차이에 대한 오해를 지적하고 심슨 (Simpson) 역설로 그 차이가 왜 중요한지를 보여준다. 4장에서는 빅 데이터 분석에서 인과성이 상관 성보다 비효율적이라는 MSC의 논증을 비판한다. 특별히 인과성을 증명하는 수학적 방법이 없다는 주장의 오류를 보여준다. 구조방정식에 토대한 인과 모형의 수학적 이론들을 제시하고, 이들 이론으로 인과성이 빅 데이터 분석에서 매우 유의미하고 유용한 역할을 할 수 있다는 것을 보여준다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0