메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제6권 제5호
발행연도
2015.1
수록면
227 - 232 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
퍼지 선형계획법은 불확실성하에서의 문제들을 해결하는데 유용한 의사결정 모형이다. 본 연구에서는 목적함수 값이 퍼지수이고 우변 상수도 퍼지수인 융합 등식 제약식을 갖는 퍼지 선형계획법 문제를 다룬다. 연구의 목적은 퍼지 해를 정의하고 그것을 구하는 절차를 모색하는 것이다. 목적함수 값에 대한 소속 함수로 부분 선형함수를, 제약식의 소속 함수로는 사다리꼴 함수를 도입한다. 사다리꼴 함수는 구간별 선형 함수 들로 나누어 나타낼 수 있다. 따라서 모든 소속 함수들을 선형식 들로 대체함으로써 퍼지 선형계획 모형을 Zimmermann의 대칭 선형 모형으로 바꿀 수 있다. 여기에 최대-최소 기준을 적용하여 일반 선형계획법 문제를 도출해 내고, 이 문제의 최적해로부터 원 문제의 퍼지 해를 얻게 된다. 본 논문에서는 사다리꼴 소속 함수에 대해 살펴보았는데 앞으로는 오목 부분 선형함수와 같은 좀 더 일반화된 소속 함수에 대한 연구가 필요하다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0