메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제13권 제3호
발행연도
2011.1
수록면
1,365 - 1,377 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
상품추천시스템에서 협업 필터링은 가장 성공적으로 여러 분야에서 활용되고 있다. 협업 필터링이 가지는 근본적인 문제 중의 하나는 신상품 추천의 어려움이다. 협업 필터링은 개별 고객과 가장 유사한 성향을 보이는 이웃고객의 구매정보를 활용하여 상품을 추천한다. 그러나 신상품의 경우 시스템 내의 어느 고객도 구매 정보를 가지고 있지 못함으로 신상품 추천을 할 수 없는 문제점이 있다. 이를 해결하기 위해 제시된 방안은 신상품과 가장 유사한 특성을 갖는 기존 상품을 선별하여 추천하는 내용기반 필터링과 협업 필터링을 결합하는 하이브리드 방안이다. 내용기반 필터링은 상품 간 특성 비교를 위해 추가적인 정보를 필요로 하나 이를 얻는 것이 어려운 많은 상황이 존재한다. 최근 구매정보 외에 추가적인 정보 없이 신상품을 추천하는 사회연결망 연결정도 중심성 방안이 제시되었다. 이 연구에서는 사회연결망의 구조적 공백을 활용한 신상품 추천 방안을 제시한다. 제시한 방안의 성능 평가를 위해 영화추천 데이터를 이용하여 실험하고 검증한다. 실험결과 제시된 방안은 연결정도 중심성 방안에 비해 추천 적중률이 높음을 보였다. 또한 가장 많이 산 고객을 선정하여 신상품을 추천하는 방안과 결합하는 경우에도 구조적 공백의 활용이 실험에서도 추천 적중률을 높일 수 있음을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0