메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제26권 제1호
발행연도
2015.2
수록면
89 - 99 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
세계 경제 포럼과 대한민국 지식경제부에서 10대 핵심정보기술 가운데 하나로 빅 데이터를 선정한바 있다. 빅 데이터에 대한 분석은 결국 데이터들이 가지고 있는 속성을 얼마나 효과적으로 분석하느냐가 관건이다. 이를 위한 기법들 중에서 군집 분석 방법은 거리 또는 유사성 측도를 이용하여 각 개체의 유사성을 측정하여 유사도가 높은 대상 집단을 분류하고 군집에 속한 개체들의 유사성과 서로 다른 군집에 속한 개체간의 상이성을 밝혀내는 통계분석 기법이다. 군집분석에서 이용되고 있는 유사성측도는 데이터의 속성에 따라 여러 가지의 형태로 분류할 수 있으며, 범주형 데이터에 적용 가능한 측도들은 음의 일치 빈도를 고려한 측도, 음의 일치 빈도를 고려하지 않는 측도, 그리고 주변 확률 분포의 포함 여부에 의한 측도 등으로 구분할 수 있다. 음의 일치 빈도는 동시발생빈도와 더불어 두 항목간의 관련성에 대한 순방향성을 의미하므로 이를 고려하지 않는 유사성 측도들보다 이를 고려한 유사성 측도들이 좀 더 현실적인 측도라고 할 수 있다. 따라서 본 논문에서는 이분형 데이터에 대해 일반적으로 많이 활용되고 있는 음의 일치 빈도를 고려한 측도들에 대해 대소 관계를 규명함으로써 이들의상한 및 하한을 설정하는 문제를 고려하였다.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001375999