메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한진단검사의학회 Annals of Laboratory Medicine Annals of Laboratory Medicine 제29권 제4호
발행연도
2009.1
수록면
314 - 319 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background : Mycobacterium tuberculosis is one of the most clinically significant infectious agents. Especially during mass outbreaks, accurate identification and monitoring are required. The proportion of Beijing family members is very high among infecting strains, and spoligotyping is not suitable for strain typing. Therefore, we studied the homogeneity of isolates using the mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) method and identified its utility for carrying out molecular epidemiologic analysis. Methods : Eighty-one clinical M. tuberculosis isolates that had previously been analyzed by spoligotyping were used in this study. We used the 12 standard MIRU loci and further four exact tandem repeat (ETR) loci (ETR-A, -B, -C, and -F). Four strains each of randomly selected Beijing and Beijinglike families were subjected to IS6110- restriction fragment length polymorphism analysis. Results : All 81 samples showed amplification products of all VNTR loci, and all of them showed differences in at least one locus. The calculation of the Hunter-Gaston diversity index (HGDI) for MIRU-VNTR gave the value of 0.965. Discriminatory index in the six loci (MIRU-10, -16, -26, -31, -39, and ETR-F) were found to be highly discriminated (HGDI >0.6). Beijing and Beijing-like family isolates were discriminated into different MIRU-VNTR types. Conclusions : MIRU-VNTR analysis by using well-selected loci can be useful in discriminating the clinical M. tuberculosis isolates in areas where the Beijing family is predominant.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0