메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의용생체공학회 의공학회지 의공학회지 제30권 제2호
발행연도
2009.1
수록면
153 - 161 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Mammogram is one of the important techniques for mass detection, which is the early diagnosis stage of a breast cancer. Especially, the CAD(Computer Aided Diagnosis) using mammogram improves the working performance of radiologists as it offers an effective mass detection. There are two types of CAD systems using mammogram; automatic and semi-automatic CAD systems. However, the automatic segmentation is limited in performance due to the difficulty of obtaining an accurate segmentation since mass occurs in the dense areas of the breast tissue and has smoother boundaries. Semi-automatic CAD systems overcome these limitations, however, they also have problems including high FP (False Positive) rate and a large amount of training data required for training a classifier. The proposed system which overcomes the aforementioned problems to detect mass is composed of the suspected area selection, the level set segmentation and SVM (Support Vector Machine) classification. To assess the efficacy of the system, 60 test images from the FFDM (Full-Field Digital Mammography) are analyzed and compared with the previous semi-automatic system, which uses the ANN classifier. The experimental results of the proposed system indicate higher accuracy of detecting mass in comparison to the previous systems.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0