메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제54권 제3호
발행연도
2017.1
수록면
875 - 894 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $[n]=\{1,2,\dots, n\}$. A set $\mathbf A=\{A_1,A_2,\dots ,A_l\}$ is a minimal cover of $[n]$ if $\bigcup_{1\leq i\leq l} A_i =[n]$ and \[ \bigcup_{\substack{1\leq i\leq l,\\ i\neq j_0}} A_i \neq [n] \quad\textnormal{for all $j_0\in [l]$}. \] Let $\mathcal{C}(n)$ denote the collection of all minimal covers of $[n]$, and write $C_{n} = \vert \mathcal{C}(n)\vert$. Let $\mathbf A \in \mathcal{C}(n)$. An element $u \in [n]$ is critical in $\mathbf A$ if it appears exactly once in $\mathbf A$. Two minimal covers $\mathbf A$, $\mathbf B \in \mathcal{C}(n)$ are said to be restricted $t$-intersecting if they share at least $t$ sets each containing an element which is critical in both $\mathbf A$ and $\mathbf B$. A family $\A \subseteq \mathcal{C}(n)$ is said to be restricted $t$-intersecting if every pair of distinct elements in $\A$ are restricted $t$-intersecting. In this paper, we prove that there exists a constant $n_{0}=n_{0}(t)$ depending on $t$, such that for all $n \ge n_{0}$, if $\A \subseteq \mathcal{C}(n)$ is restricted $t$-intersecting, then $|\A| \le C_{n-t}$. Moreover, the bound is attained if and only if $\A$ is isomorphic to the family $\mathcal{D}_{0}(t)$ consisting of all minimal covers which contain the singleton parts $\{1\}$, $\ldots$, $\{t\}$. A similar result also holds for restricted $r$-cross intersecting families of minimal covers.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0