메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제52권 제1호
발행연도
2015.1
수록면
323 - 333 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $X$ be a compact metric space and let $|A|$ denote the cardinality of a set $A$. We prove that if $f\colon X\to X$ is a homeomorphism and $|X|=\infty$, then for all $\delta>0$ there is $A\subset X$ such that $|A|=4$ and for all $k\in\Z$ there are $x,y\in f^k(A)$, $x\neq y$, such that $\dist(x,y)<\delta$. An observer that can only distinguish two points if their distance is grater than $\delta$, for sure will say that $A$ has at most 3 points even knowing every iterate of $A$ and that $f$ is a homeomorphism. We show that for hyper-expansive homeomorphisms the same $\delta$-observer will not fail about the cardinality of $A$ if we start with $|A|=3$ instead of $4$. Generalizations of this problem are considered via what we call $(m,n)$-expansiveness.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0