메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국계량경제학회 계량경제학보 계량경제학보 제26권 제2호
발행연도
2015.1
수록면
36 - 56 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We evaluate out-of-sample forecasting performance of different prediction models using different estimation windows to account for a variety of statistical characteristics such as the long range dependence and the structural breaks of the process. We identify the timing of the deterministic shifts in the unconditional variance and evaluate the impact of accounting for the level shifts in the unconditional variance on out-of-sample volatility forecasting. The modified iterated cumulative sums of squares algorithm identifies two shifts in the unconditional variance for the KOSPI (Korea Composite Stock Price Index) returns. For the KOSPI returns process, the full sample performance of the recursive GARCH(1,1) model is worse than the competing models, which is unsurprising given two structural breaks in the process. The superiority of the competing models in forecasting performance can be attributed to the capability of the model which accommodates both the long range dependence by giving a slow hyperbolic rate of decaying weights on the past observations in forming the likelihood and the structural changes in the variance by discarding observations beyond a rolling window length distance in the past which may have come from a different regime. Although we try to improve the forecasting performance by incorporating statistical characteristics of the process into a prediction model, the out-of-sample performance of the prediction model can be tainted with uncertainties related to statistical tests and estimation methodologies.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0