메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제11권 제1호
발행연도
2005.1
수록면
57 - 69 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: Electronic Medical Record contains the majority of clinical data in unstructured text. The information in the textual document can be stored in conceptual format and used to support clinical care by text summarization technique. In this study, we present Information Extraction(IE) using Concept Node(CN) which is extraction rule in case frame from brain radiology reports in SNUH(Seoul National University Hospital) for summarization. Method: Following steps are performed: design conceptual model to define semantic entities as extraction templates of brain radiology report, build CN dictionary based on statistical syntactic pattern and development of parser to extract relevant information based on defined templates. Results: The three evaluation results shows that 19% precision improvement after post processing supplemental specified complex verb construction and 19.24~21.25% accurate semantic effectiveness with extracting additional Korean noun. The average of precision is 85.18%, average of recall is 93.71% and F-measure is 0.89. Conclusion: Our approach has advantageous elements for different language at the same sentence. We expect this IE technology can summarize vast amount radiology texts material for clinical decision support system effectively and hope this study helps the evolution of clinical data representation in Korean medical records and its integration into the EMR in the future.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0