메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seok Chan Hong (Gachon University) You Jin Hwang (Gachon University) Un Gu Kang (Gachon University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제24권 제8호(통권 제185호)
발행연도
2019.8
수록면
113 - 121 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The personalized meal service is being developed to prevent and alleviate illnesses according to the individual"s health condition. However, the current meal does not provide a fully customized service to individuals and a diet that meets the consumer"s information needs. The cause is the lack of information on the ingredients and the difficulty of comparative analysis between the materials. Therefore, in this study, we propose basic analysis process for basic information acquisition and database construction for food composition before providing personalized food. In this study, we investigated the content of carbohydrate, reducing sugar and protein as basic components of Grifola frondosa and investigate the content of polyphenol as a biological active ingredients. Respectively. Studies on the hypoglycemic effect of the diabetic rat model have been carried out in relation to the prevention of diseases. Based on the results of this study, it is also possible to obtain information on the basic ingredients of the food and to analyze the information on the content and activity of the biological active ingredients. Using animal models, information on disease prevention and mitigation was also available. The process introduced in this study is applied to various food materials, accumulating data, and utilizing Database, this results will be an excellent tool for providing more efficient service by providing a proper dietary composition for consumers.

목차

Abstract
I. Introduction
II. Meterial and method
III. Result
IV. Discussion
REFERENCES

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0