메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조민수 (연세대학교) 박진욱 (연세대학교) 하지환 (연세대학교) 박찬희 (연세대학교) 박상현 (연세대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.46 No.6
발행연도
2019.6
수록면
544 - 553 (10page)
DOI
10.5626/JOK.2019.46.6.544

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
생물학 개체명 인식이란 생물학 문헌으로부터 질병, 유전자, 단백질과 같은 생물학 개체명을 추출하고 그 종류를 분류하는 작업으로, 생물학 데이터로부터 유의미한 정보를 추출하는데 중요한 역할을 한다. 본 연구에서는 입력 단어의 자질을 자동으로 추출할 수 있는 딥러닝 기반의 Bi-LSTM-CRF 모델을 활용한 개체명 인식 연구를 진행하였다. Multi-head 주의 기제 기법을 적용하여 입력 단어들 간의 관계를 포착하고 관련성이 높은 단어에 주목하여 예측의 성능을 높였다. 또한, 단어 단위 임베딩 벡터 외 문자 단위 임베딩 벡터를 결합하여 입력 임베딩의 표상을 확장하고, 각 표상의 정보 흐름을 학습하기 위해 Highway 네트워크에 적용하였다. 제안하는 모델의 성능을 평가하기 위해 두 개의 영어 생물학 데이터셋으로 비교 실험을 진행하였으며, 그 결과 기존 연구의 모델들보다 향상된 성능을 보였다. 이를 통해 제안하는 방법론이 생물학 개체명 인식 연구에서 효과적인 방법론임을 입증하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 개체명 인식 모델
4. 실험 및 토의
5. 결론 및 향후 연구
References

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-000782035