메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국여가레크리에이션학회 한국여가레크리에이션학회지 한국여가레크리에이션학회지 제39권 제2호
발행연도
2015.6
수록면
117 - 132 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study was (1) to investigate the network evolution process to understand the intellectual structure of leisure and recreation studies and (2) to examine the degree to which keywords, authors, authors clusters contributed to the formation of intellectual structure within the leisure and recreation studies. Toward this goal, we performed social network analysis on a total of thirty-five volumes of the Korean Journal of Leisure and Recreation, which were published between 2006 and 2014. Excluding the fourth issue of 2014, the total number of papers included in the current study were 539 with 1,974 keywords. The NetMiner v4.2 was employed to conduct the social network analysis. The results were as follows: First, there appeared no significant change in the intellectual structure of leisure and recreation studies. Although slight seasonal changes were identified, there was no notable paradigm shift. Second, only a few top keywords contributed to the formation of intellectual structure within the leisure and recreation studies for the past nine years. Those keywords with high degree centrality included: (a) leisure satisfaction, (b) leisure activities, (c) leisure motivation, (d) life satisfaction, (e) leisure constraints, (f) leisure flow experience, and (g) leisure sports. Keywords with betweenness centrality were: (a) leisure satisfaction, (b) leisure activities, and (c) leisure motivation. In addition, the keyword network demonstrated a scale-free network, in which a small number of hub keywords appeared in the articles with majority keywords. That is, 20% (215) of 1,073 keywords possessed 55.2% (17,371) links from the total.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-069-000357626