메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Asanthi Jinasena (University of South-Eastern Norway) Roshan Sharma (University of South-Eastern Norway)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
546 - 551 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Improvements in kick/loss detection are a key research interest in the drilling industry. Cost-effective, accurate and advanced online return flow sensors play a vital role in this regard. We have proposed the use of a Venturi channel in the return flow line with the possibility of developing it into an online soft sensor. A mechanistic model based online estimator would possibly estimate the flow rate with a reasonable accuracy. A reduced order mathematical model for this purpose has been developed by the authors [4]. In this paper, we study the possibility of estimation of flow rate using different estimators based on this reduced order model. A reduced order linear observer has been designed and tested in simulations. Further, a linear Kalman filter, an extended Kalman filter and an unscented Kalman filter are tested and compared. The extended and unscented Kalman filters are further tested with experimental results. The estimations are accurate enough with a mean absolute error of 2% and 1.9%, respectively. The proposed model based flow estimation idea has a promising potential of developing into an online soft sensor in kick-loss detection algorithms.

목차

Abstract
1. BACKGROUND
2. MATHEMATICAL MODEL
3. ESTIMATORS FOR FLOW RATE THROUGH THE VENTURI CHANNEL
4. RESULTS AND DISCUSSION
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003538734