메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Aditya Tirta Pratama (Hiroshima University) Katsuhiko Takahashi (Hiroshima University) Katsumi Morikawa (Hiroshima University) Keisuke Nagasawa (Hiroshima University) Daisuke Hirotani (Prefectural University of Hiroshima)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.17 No.3
발행연도
2018.9
수록면
531 - 549 (19page)
DOI
10.7232/iems.2018.17.3.531

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Cellular bucket brigades (CBB) are a new design of bucket brigade that can reduce unproductive travel by workers on U-shaped production lines. With CBB, each worker works on one side of an aisle when proceeding in one direction, and on the other side when proceeding in the reverse direction; workers then exchange their work when they meet each other. The throughput of CBB may be reduced due to blocking and/or halting at discrete workstations. A method for countering these blocking/halting conditions is proposed here; it utilizes worker collaboration such that a maximum of two workers can collaborate on the same task. The collaboration velocity is proportional to the sum of individual worker velocities, and is influenced by the worker collaboration coefficient. The existing model and its assumptions are utilized here to compare the performance of CBB against worker collaboration on a three-station, twoworker U-line for which the difference collaboration coefficient and work content of the product at each station are deterministic. The results show that worker collaboration almost always outperforms CBB, except for certain cases in which each worker has a different velocity at different stations.

목차

ABSTRACT
1. INTRODUCTION
2. LITERATURE REVIEW
3. U-SHAPED PRODUCTION LINE
4. ANALYSIS AND DISCUSSION
5. MANAGERIAL IMPLICATIONS AND CONCLUSIONS
REFERENCES

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0