메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정책분석평가학회 정책분석평가학회보 정책분석평가학회보 제14권 제1호
발행연도
2004.3
수록면
219 - 241 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper addresses the question of homogeneity across a housing market. Studies often assume that the market is homogeneous within a given geographic boundary such as a metropolitan area or a city. Since such spatial units are drawn up for historical and political reasons, one may question whether it is fair to assume that there is a single competitive market for housing. If there is segmentation. assuming homogeneity leads to uninformative estimates of housing price equations and public policy that lacks proper foundation. The most important conclusions of this paper in terms of methodological point of view can be summarized as follows: (1) Hedonic models of housing prices must be corrected for heteroskedasticity to ensure greater efficiency in the estimation of hedonic prices wherever the heteroskedasticity does exist: (2) There are significant submarket differences in hedonic prices of housing attributes, implying that great care should be taken in the specification of the geographic units for which hedonic models are estimated: and (3) After careful submarket specification, a combination OLS (Ordinary Least Squares) with WLS (Weighted Least Squares) estimates provides the greatest predictive power with respect to estimate of housing prices in the study area. In other words, if there has no evidence of heteroskedasticity. the OLS should be utilized; otherwise. the WLS must be utilized. From the point of view of urban theory, the most important conclusion is that markets are segmented: hedonic prices differ among market segments, reflecting differences in the bid and offer curves for housing. It is recommended the dimensions of this segmentation should be explored further.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-035-000129191