메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한교통학회 대한교통학회지 대한교통학회지 제22권 제7호
발행연도
2004.12
수록면
79 - 90 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
베이지안 망(Bayesian Networks)은 인공 신경망, 유전자 알고리즘, 전문가시스템, 퍼지이론 등과 더불어 데이터마이닝의 중요한 기법 중의 하나로서, 베이지안 통계 이론(Bayesian Statistics Theory)을 적용하여 변수들간의 확률적인 관계를 기호화함으로써, 설명변수들과 종속변수들간의 인과관계를 파악할 수 있다. 이 연구는 2002년도 수도권 가구통행실태조사 자료의 가구, 개인 및 통행 특성(가구수입, 승용차 보유대수, 주택규모, 통행목적 등)을 반영하여, 베이지안 망을 이용한 통행발생 모형을 처음으로 설계 · 구축하여, 각 변수들간의 상관관계와 인과관계를 분석함으로써, 설명변수인 가구수입의 구성비가 변하였을 때 승용차 보유대수와 주택규모 구성비의 변화율(확률)을 예측한다. 그리고 승용차 보유대수와 주택규모의 구성비가 변하였을 때 통행목적 구성비의 확률을 예측한다. 또한 동행목적의 발생량이 변화였을 때, 가구 특성 구성비의 변화에 따른 발생량을 예측한다. 따라서, 이 연구는 현실에는 존재하지만 설명변수들간의 복잡한 상관성을 배제하고 설명변수와 통행목적간의 단순한 직선관계를 가정하는 기존 통행발생 모형의 한계를 극복할 수 있는 가능성을 제시한다. 또한 선택되지 않은 통행목적에 대한 정보의 부족으로 인한 통행발생 모형 구축의 어려움을 극복한다. 또한 통행목적의 변화를 실시간으로 모의실험(Simulation) 할 수 있는 방법론을 개발하여 다양한 교통정책에 확대 · 적용할 수 있을 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-053-003371108