메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Rabia Fayyaz (Hanbat National University) Eun Joo Rhee (Hanbat National University)
저널정보
한국데이터전략학회 Journal of Information Technology Applications & Management Journal of Information Technology Applications & Management Vol.25 No.2
발행연도
2018.6
수록면
41 - 52 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This paper presents a method for accurate camera self-calibration based on SIFT Feature Detection and image quality assessment. We performed image quality assessment to select high quality images for the camera self-calibration process. We defined high quality images as those that contain little or no blur, and have maximum contrast among images captured within a short period. The image quality assessment includes blur detection and contrast assessment. Blur detection is based on the statistical analysis of energy and standard deviation of high frequency components of the images using Discrete Cosine Transform. Contrast assessment is based on contrast measurement and selection of the high contrast images among some images captured in a short period. Experimental results show little or no distortion in the perspective view of the images. Thus, the suggested method achieves camera self-calibration accuracy of approximately 93%.

목차

Abstract
1. Introduction
2. Image Quality Assessment and Camera Self-Calibration
3. Experiments and Discussion
4. Conclusion
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-005-003159771