메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyuncheol Kim (Chung-Ang University) Joonki Paik (Chung-Ang University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.7 No.3
발행연도
2018.6
수록면
236 - 244 (9page)
DOI
10.5573/IEIESPC.2018.7.3.236

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Extraction of key frames plays a significant role in selecting the most informative subset of frames from a huge amount of video data in order to compress its content. Key frame extraction has a good number of applications, such as video browsing, indexing, and storage. Most key framebased video summarization techniques directly process an input video dataset. An alternative approach uses only low-rank components, without considering the rest of the significant information in the video. This paper presents a novel key frame-extraction framework based on low-rank sparse representation. The proposed framework is motivated by the fact that low-rank sparse-feature representation pursues consistent nonlocal structures for image pixels with similar features. We use low-rank representation to ensure globally consistent non-salient systematic structures for pixels with similar features, and we also use sparse representation to robustly select the best sample for distinct structures of all pixels. Experimental results on a human-labeled benchmark dataset and a comparative performance evaluation with state-of-the-art methods demonstrate the advantages of the proposed method.

목차

Abstract
1. Introduction
2. Formulation of the Feature Selection Problem
3. Experimental Results
4. Conclusion
References

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-003112426