메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ravi Dadsena (Indian Institute of Technology Madras) Rohini Palanisamy (Indian Institute of Technology Madras) Anandh Kilpattu Ramaniharan (Indian Institute of Technology Madras) Ramakrishnan Swaminathan (Indian Institute of Technology Madras)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.7 No.3
발행연도
2018.6
수록면
175 - 183 (9page)
DOI
10.5573/IEIESPC.2018.7.3.175

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that affects a large population. The early detection of mild cognitive impairment (MCI) can help to diagnose AD and assist in further treatment strategies. The morphological alterations of lateral ventricles and the corpus callosum are considered a significant imaging biomarker for the early diagnosis of MCI and AD. Shape-based features provide distinct morphological variations of brain structures during disease progression. In this research, an attempt has been made to analyze the variations of lateral ventricles and the corpus callosum using Zernike moments and fractal box count features. These shape features help to classify the morphological structure of lateral ventricles and the corpus callosum as control, MCI, and AD. The proposed method can quantify the shape variations using Zernike moments and fractal box count features. Here, Zernike moments and fractal box count measures show differences in mean values for control, MCI, and AD subjects with a statistical significance of p<0.05. Performance is analyzed using multilayer perceptron, K-nearest neighbors (KNN) and linear support vector machine (SVM) classifiers. Linear SVM provides better differentiation for controls vs. MCI and controls vs. AD on the order of 93% and 98%, respectively. Results show that the classification of shape descriptors performs better with respect to accuracy, specificity, and sensitivity measures. Therefore, this study is clinically important for the early diagnosis of AD.

목차

Abstract
1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-003112355