메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ramesh M (Anna University) Sujatha C. M (Anna University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.7 No.2
발행연도
2018.4
수록면
124 - 131 (8page)
DOI
10.5573/IEIESPC.2018.7.2.124

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The current diagnostic evaluation criteria for Alzheimer’s disease (AD) are restricted to cognitive deficits, and less consideration is given to AD-related noncognitive, behavioral, and psychological symptoms of dementia. Vascular deterioration in AD subjects manifests neuropsychiatric symptoms (NPS). Early anxiety and depression are associated with cognitive decline. The brainstem undergoes deformation during the initiation of AD due to NPS. In this work, structural deformation of the brainstem is analyzed using Lattice Boltzmann criterion-based hybrid level set method (LSM) and fourth-order diffusion filtering. Contour and skeletal-based shape measures are extracted and analyzed using multilayer perceptron (MLP). Results show that the fourth-order diffusion filter provides strong edges, which aids in accurate segmentation. The Lattice Boltzmann criterion-based hybrid LSM is able to delineate the whole brainstem. Hough transform statistics (HTS) obtained from the segmented brainstem describe the geometric properties of the boundary of the brainstem. Eigen space values identify the skeletal variations of the brainstem for normal, Mild Cognitive Impairment (MCI), and AD subjects. Both HTS and eigen space features are found to represent better differentiation between normal, MCI, and AD subjects with a significance of p<0.05. It is observed that Hough transform–based statistical values have the ability to better discriminate the structural deformity of the brainstem with classification accuracies of 73%, 68%, and 71% for normal–MCI, MCI–AD, and normal–AD classifications, respectively, using MLP. Thus, this analysis identifies the presence of structural abnormality in the brainstem during the progression of AD, and therefore, this analysis could aid in early diagnosis of AD.

목차

Abstract
1. Introduction
2. Methodology
3. Results
4. Conclusion
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-002044336