메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최민준 (세종대학교) 김주환 (세종대학교) 윤주범 (세종대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제28권 제3호
발행연도
2018.6
수록면
635 - 642 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
4차 산업혁명 시대에 우리는 소프트웨어 홍수 속에 살고 있다. 그러나, 소프트웨어의 증가는 필연적으로 소프트웨어 취약점 증가로 이어지고 있어 소프트웨어 취약점을 탐지 및 제거하는 작업이 중요하게 되었다. 현재까지 소프트웨어 취약 여부를 예측하는 연구가 진행되었지만, 탐지 시간이 오래 걸리거나, 예측 정확도가 높지 않았다. 따라서 본 논문에서는 기계학습 알고리즘을 이용하여 소프트웨어의 취약 여부를 효율적으로 예측하는 방법을 설명하며, 다양한 기계학습 알고리즘을 이용한 실험 결과를 비교한다. 실험 결과 k-Nearest Neighbors 예측 모델이 가장 높은 예측률을 보였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. VulPredictor의 취약 여부 예측 방법
IV. 성능평가
V. 결론
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0