메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국게임학회 한국게임학회 논문지 한국게임학회 논문지 제16권 제6호
발행연도
2016.12
수록면
79 - 89 (11page)
DOI
10.7583/JKGS.2016.16.6.79

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 게임분야에서 수준 높은 인공지능 에이전트의 구현은 많은 주목을 받고 있다. 그 중 Monte-Carlo Tree Search(MCTS)는 완전 정보를 가진 게임에서 무작위 탐색을 통해 최적의 해를 구할 수 있는 알고리즘으로, 수식으로 표현되지 않는 경우에 근사치를 계산하는 용도로 적합하다. 하스스톤과 같은 Trading Card Game(TCG) 장르의 게임은 상대방의 카드와 플레이를 예측할 수 없기 때문에 불완전 정보를 가지고 있다. 본 논문에서는 불완전 정보 카드 게임에서 인공지능 에이전트를 생성하기 위해 MCTS 알고리즘을 응용하는 방법을 제안하고, 현재 서비스되는 하스스톤 게임에 적용하여 봄으로써 MCTS 알고리즘의 실용성을 검증한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-050-002172831