메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Suntae Kim (Korea Institute of Science and Technology Information)
저널정보
건국대학교 지식콘텐츠연구소 International Journal of Knowledge Content Development & Technology International Journal of Knowledge Content Development & Technology Vol.8 No.1
발행연도
2018.3
수록면
79 - 89 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We collected and analyzed data from e3data.org, which is a global registry of data repository services. We analyzed data profile for three leading Asian economies–Korea, China, and Japan–against the reference data for other participating countries. In particular, we examined how individual countries contribute to the repository, organizational type, versioning and product quality management, and subject tagging. We come to the conclusion that all three Asian countries still fall short in terms of involvement. As for participating institutions, there are 7 from Korea, 64 from China, and 120 from Japan. Among Chinese organizations, 3 are profit, 61 non-profit, and 37 organizations (which yields 1.8%) are involved in repository building. In Japan, there is 1 is commercial and 119 non-profit organizations, of which 57 (3.0%) are involved in repository building. All 7 organizations from Korea are non-profit, and 6 of them (0.3%) are involved in repository building. As regards versioning and product quality management, Korea, China, and Japan are up to par with other countries. Subject analysis reveals that Korea contributes more to geosciences, Japan to physics and geosciences, while China, unlike Korea and Japan, is more active in life sciences. It is hoped that this study will help planning domestic infrastructure for research data repositories with proper consideration for specific research domains and national characteristics.

목차

References
ABSTRACT
1. Research Objectives
2. Previous research
3. Material and Methods
4. re3data.org data analysis
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-309-001906311