메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Suntae Kim (Korea Institute of Science and Technology Information)
저널정보
건국대학교 지식콘텐츠연구소 International Journal of Knowledge Content Development & Technology International Journal of Knowledge Content Development & Technology Vol.8 No.1
발행연도
2018.3
수록면
25 - 36 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Research data must be testable. Science is all about verification and testing. To make data testable, tools used to produce, collect, and examine data during the research must be available. Quite often, however, these data become inaccessible once the work is over and the results being published. Hence, information and the related context must be provided on how research data are preserved and how they can be reproduced. Open Science is the international movement for making scientific research data properly accessible for research community. One of its major goals is building data repositories to foster wide dissemination of open data. The objectives of this research are to examine the features of research data, common repository platforms, and community requests for the purpose of designing functional requirements for research data repositories. To analyze the features of the research data, we use data curation profiles available from the Data Curation Center of the Purdue University, USA. For common repository platforms we examine Fedora Commons, iRODS, DataONE, Dataverse, Open Science Data Cloud (OSDC), and Figshare. We also analyze the requests from research community. To design a technical solution that would meet public needs for data accessibility and sharing, we take the requirements of RDA Repository Interest Group and the requests for the DataNest Community Platform developed by the Korea Institute of Science and Technology Information (KISTI). As a result, we particularize 75 requirement items grouped into 13 categories (metadata; identifiers; authentication and permission management; data access, policy support; publication; submission/ingest/management, data configuration, location; integration, preservation and sustainability, user interface; data and product quality). We hope that functional requirements set down in this study will be of help to organizations that consider deploying or designing data repositories.

목차

ABSTRACT
1. Research Objectives
2. Research methods
3. Previous research
4. Results and Discussion
5. Functional requirements for research data repository
6. Conclusion
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-309-001906346