메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박철용 (계명대학교)
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제28권 제4호
발행연도
2017.7
수록면
721 - 731 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이 연구에서는 Lasso 페널티 방법을 이용한 주성분분석 방법을 소개한다. 주성분분석에 Lasso 페널티를 적용하는 방법으로 흔히 사용되는 방법은 크게 두 가지가 있다. 첫 번째 방법은 주성분을 반응변수로 놓고 원 자료행렬을 설명변수로 하는 회귀분석의 회귀계수를 이용하여 최적의 선형결합 벡터를 구할 때 Lasso 페널티 (일반적으로 elastic net 페널티)를 부과하는 방법이다. 두 번째 방법은 원자료행렬을 비정칙값 분해로 근사하고 남은 잔차행렬에 Lasso 페널티를 부과하여 최적의 선형결합 벡터를 구하는 방법이다. 이 연구에서는 주성분 분석에 Lasso 페널티를 부과하는 이 두 가지 방법들을 자세하게 개관하는데, 이 방법들은 변수 숫자가 표본크가보다 큰 경우에도 적용가능한 장점이 있다. 또한 실제 자료분석에서 R 프로그램을 통해 두 방법을 적용하고 그 결과를 비교한다. 구체적으로 변수 숫자가 표본크기보다 큰 Ahamad (1967) 의 crime 자료에 적용한다.

목차

요약
1. 머리말
2. Lasso 페널티에 기반한 주성분분석 방법
3. 실제 자료 적용 예제
4. 결론
References
Abstract

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0