메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
손원 (단국대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제36권 제6호
발행연도
2023.12
수록면
501 - 514 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
텍스트데이터는 일반적으로 많은 단어로 이루어져 있다. 텍스트데이터와 같이 많은 변수로 구성된 데이터의 경우 과적합 등의 문제로 분석에 있어서의 정확성이 떨어지고, 계산과장에서의 효율성에도 문제가 발생하는 경우를 흔히 볼 수 있다. 이렇게 변수가 많은 데이터를 분석하기 위해 특징선택, 특징추출 등의 차원축소 기법이 자주 사용되고 있다. 희소주성성분분석은 벌점이 부여된 최소제곱법 중 하나로 엘라스틱넷 형태의 목적함수를 사용하여 유용하지 않은 주성분을 제거하고 각 주성분에서도 중요도가 큰 변수만 식별해내기 위해 활용되고 있다. 이 연구에서는 희소주성분분석을 이용하여 많은 변수를 가진 텍스트데이터를 소수의 변수만으로 요약하는 절차를 제안한다. 이러한 절차를 실제 데이터에 적용한 결과, 희소주성분분석을 이용하여 단어를 선택하는 과정을 통해 목표변수에 대한 정보를 이용하지 않고도 유용성이 낮은 단어를 제거하여 텍스트데이터의 분류 정확성은 유지하면서 데이터의 차원을 축소할 수 있음을 확인하였다. 특히 차원축소를 통해 고차원 데이터 분석에서 분류 정확도가 저하되는 KNN 분류기 등의 분류 성능을 개선할 수 있음을 알 수 있었다.

목차

Abstract
1. 서론
2. 희소주성분분석을 이용한 텍스트데이터의 단어 선택
3. 실제 데이터에의 적용
4. 결론 및 토의
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089259669