메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박천음 (강원대학교) 이창기 (강원대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제24권 제3호
발행연도
2018.3
수록면
113 - 121 (9page)
DOI
10.5626/KTCP.2018.24.3.113

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (16)

초록· 키워드

오류제보하기
포지션 인코딩은 문장 내 등장하는 단어의 위치에 따라 가중치를 적용하는 방법이다. 포인터 네트워크는 입력열에 대응되는 위치를 출력하는 딥 러닝 모델이며, 상호참조해결에 적용될 수 있다. 그러나 포인터 네트워크는 입력열의 길이가 긴 경우에 성능이 저하되는 문제가 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 포지션 인코딩과 동적 포지션 인코딩을 포인터 네트워크에 적용할 것을 제안하고, Encoder RNN의 레이어를 더 깊게 쌓아 높은 수준으로 추상화할 것을 제안하며, 이를 이용한 상호참조해결 모델을 제안한다. 실험 결과, 본 논문에서 제안한 포지션 인코딩 기반 스택 포인터 네트워크 모델이 기존의 포인터 네트워크 모델보다 6.01% 향상된 CoNLL F1 71.78%의 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 포지션 인코딩 기반 스택 포인터 네트워크
4. 실험
5. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0