메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Byeong Jun Kim (부산외국어대학교) Kyoo Jae Shin (부산외국어대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제24권 제2호
발행연도
2018.2
수록면
155 - 163 (9page)
DOI
10.5302/J.ICROS.2018.17.0214

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Most power companies are wasting hot water in the sea, called the wasted warm water energy. This research attempts to develop the thermal energy management system of warm water energy that is utilized in a fish farming systems based on Internet of Things(IoT). It had developed a remote control and monitoring system of a smart fish farm by using IoT technology. In this system, we had proposed to build a smart fish farming system that has the function of sensing and monitoring by several sensors such as; oxygen, temperature, pH, and water level. It also provide a close loop water flow control in the aquarium which are controlled by microcontroller and supported by Massage Queue Telemetry Transport (MQTT) communication protocol on the mobile application or website application. The proposed system is realized the smart fish farming system based IoT using wasted warm water energy, which is very powerful to create a natural environment of fish growing condition and life cycle. This system is capable to do control and monitoring through mobile and web application. It is satisfied with the performance through the analysis of aquarium system and experiment results for the designed smart fish farming system. Moreover, this proposed system has main advantages which are minimize the human effort for the fish farming and unmaned, and it is applied to new concept smart fish farm aquarium in the near future.

목차

Abstract
I. Introduction
II. Design of smart fish farm system
III. Analysis of Smart fish farm structure
IV. Design of remote control system based on IoT
V. Result of experiment
VI. Conclusion
REFERENCE

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001757533