메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양평우 (국립농업과학원) 남광우 (군산대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.45 No.1
발행연도
2018.1
수록면
53 - 60 (8page)
DOI
10.5626/JOK.2018.45.1.53

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 인 메모리 기반의 분산처리 시스템인 Spark를 이용하여 공간 웹 객체 검색 시스템을 구현한 논문이다. 소셜 네트워크의 발전은 방대한 양의 공간 웹 객체를 생성하게 되었고, 기존의 공간 웹 객체 검색 시스템을 이용한 데이터 검색이나 분석은 힘들어졌다. 최근에 분산처리 시스템의 발전은 대용량의 데이터를 빠르게 분석하고 검색하는 기능을 지원해준다. 따라서 대용량의 공간 웹 객체를 검색하기 위해서는 분산 처리 시스템을 이용한 방법이 필요하다. 분산 처리 시스템에서는 데이터가 블록 단위로 처리되고, 이러한 블록 하나를 Spark에서는 데이터를 RDD로 변환하여 처리한다. 본 논문에서는 위의 방법에 착안하여 전체 공간 영역을 기반으로 서로 겹치지 않는 공간영역으로 분할을 하고, 분할된 영역 하나당 하나의 파티션을 할당하고 각각의 파티션은 자신이 포함하고 있는 데이터에 대한 공간 웹 객체 인덱스로 구성하는 시스템을 제안한다. 즉, 본 논문에서는 공간 분할을 이용하여 분산처리 시스템을 효율적으로 이용하고, 분할된 공간에 대한 검색의 효율성을 높일 수 있는 시스템을 제안한다. 또한, 데이터의 검색을 위하여 공간 정보와 단어 정보를 같이 사용하여 인덱스를 구축하는 QP-tree를 적용한 방법과 공간 정보만을 이용하여 인덱스를 구축하는 R-tree를 적용한 방법과의 비교를 통하여 제안한 시스템이 공간 웹 객체의 검색에 더 우수한 성능을 보여주는 것을 확인할 수 있다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 시스템 구조
4. 시스템 구현
5. 공간 웹 객체 검색 성능 실험
6. 결론 및 향후 연구 방향
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-001778651