메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Furqan Asghar (Kunsan National University) Muhammad Talha (Kunsan National University) Sung Ho Kim (Kunsan National University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.17 No.4
발행연도
2017.12
수록면
245 - 256 (12page)
DOI
10.5391/IJFIS.2017.17.4.245

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent times, inverters are considered as the basic building block in an electrical drive system used widely in many industrial drive applications. However, the reliability of these inverters is mainly affected by the failure of power electronic switches. Various faults in inverter may influence the system operation by unexpected maintenance, which increases the cost factor and reduce overall efficiency. In this paper, comparative study of three different fault detection and diagnosis systems for three phase inverter is presented. The basic purpose of these fault detection and diagnosis systems is to detect single or multiple faults efficiently. These techniques rely on the neural network for fault detection and diagnosis by using Clarke transformed two-dimensional features extraction, three-dimensional features extraction and features extraction using discrete wavelet transform (DWT) with a different number of features in each technique. Several features are extracted using different mechanisms and used in the neural network as input for fault detection and diagnosis. Furthermore, a simulation study is carried out to analyze the fault detection and diagnosis response of these techniques. Also, a comparative study has been performed by considering fault detection time and accuracy. Comparison results prove the supremacy of three-dimensional feature extraction technique over other two techniques as it can detect and diagnose single, double and triple faults in a single cycle with high accuracy as compared to other two techniques multi-cycles detection.

목차

Abstract
1. Introduction
2. Fault Detection System Structure
3. Fault Detection and Diagnosis System Model
4. Simulation Studies
5. Conclusion
References

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001712692