메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오상환 (한국인터넷진흥원) 김태은 (한국인터넷진흥원) 김환국 (한국인터넷진흥원)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제18권 제11호
발행연도
2017.11
수록면
94 - 103 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
자동으로 해킹을 수행하는 도구 및 기법의 발전으로 인해 최근 신규 보안 취약점들이 증가하고 있다. 대표적인 취약점 DB인 CVE를 기준으로 2010년부터 2015년까지 신규 취약점이 약 8만건이 등록되었고, 최근에도 점차 증가하는 추세이다. 그러나 이에 대응하는 방법은 많은 시간이 소요되는 전문가의 수동 분석에 의존하고 있다. 수동 분석의 경우 취약점을 발견하고, 패치를 생성하기까지 약 9개월의 시간이 소요된다. 제로데이와 같은 빠른 대응이 필요한 취약점에 대한 위험성이 더 부각되는 이유이다. 이와 같은 문제로 인해 최근 자동화된 SW보안 취약점 탐색 및 대응 기술에 대한 관심이 증가하고 있다. 2016년에는 바이너리를 대상으로 사람의 개입을 최소화하여 자동화된 취약점 분석 및 패치를 수행하는 최초의 대회인 CGC가 개최 되었다. 이 외에도 세계적으로 Darktrace, Cylance 등의 프로젝트를 통해 인공지능과 머신러닝을 활용하여 자동화된 대응 기술들을 발표하고 있다. 그러나 이러한 흐름과는 달리 국내에서는 자동화에 대한 기술 연구가 미비한 상황이다. 이에 본 논문에서는 자동화된 SW 보안 취약점 탐색 및 대응 기술을 개발하기 위한 선행 연구로서 취약점 탐색과 대응 기술에 대한 선행 연구 및 관련 도구들을 분석하고, 각 기술들을 비교하여 자동화에 용이한 기술 선정과 자동화를 위해 보완해야 할 요소를 제안한다.

목차

요약
Abstract
1. 서론
2. 관련 기술 개념
3. SW 보안 취약점 자동 탐색 기술
4. SW 보안 취약점 대응 기술
5. 결론 및 향후 연구 방향
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-505-001520406