메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태은 (숭실대학교) 전지수 (숭실대학교) 정용훈 (바스랩) 전문석 (숭실대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제20권 제6호
발행연도
2019.6
수록면
541 - 547 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 자동화 되는 해킹 및 분석 기술의 발전으로 인하여 수많은 소프트웨어 보안 취약점이 빠르게 발표되고 있다. 대표적인 취약점 데이터베이스인 NVD(National Vulnerability Database)에는 2010년부터 2015년까지 보안취약점(CVE: Common Vulnerability Enumeration) 약 8만 건이 등록되었으며, 최근에도 점차 증가하고 있는 추세이다. 보안 취약점은 빠른 속도로 증가하고 있는 반면, 보안 취약점을 분석하고 대응하는 방법은 전문가의 수동 분석에 의존하고 있어 대응 속도가 느리다. 이런 문제점을 해결하기 위해 자동화된 방법으로 보안 취약점을 탐색하고, 패치하여 악의적인 공격자에게 공격 기회를 줄 수 있는 보안 취약점을 사전에 대응 할 수 있는 기술이 필요하다. 본 논문에서는 복잡도 분석을 통해 취약점 탐색 대상 바이너리의 특징을 추출하고, 특징에 적합한 취약점 탐색 전략을 선정하여 취약점을 자동으로 탐색하는 기술을 제안한다. 제안 기술은 AFL, ANGR, Driller 도구와 비교 검증 하였으며 코드 커버리지는 약 6% 향상, 크래시 개수는 약 2.4배 증가, 크래시 발생율 약 11% 향상 효과를 볼 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 동적 분석 기반 하이브리드 퍼징 기술
4. 성능 실험 결과
5. 결론 및 향후 과제
References

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-505-000923674