메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kazuki HIRAYAMA (Kyushu Institute of Technology) Noriaki MIYAKE (Kyushu Institute of Technology) Huimin LU (Kyushu Institute of Technology) Joo Kooi TAN (Kyushu Institute of Technology) Hyoungseop KIM (Kyushu Institute of Technology) Rie TACHIBANA (Oshima College) Yasushi HIRANO (Yamaguchi University) Shoji KIDO (Yamaguchi University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2017
발행연도
2017.10
수록면
351 - 355 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Lung cancer is the leading cause of death which accounts for the number of deaths in cancer in the world. Early detection and early treatment are regarded as an important. Especially, the ground glass opacity (GGO) is a shadow called pre-cancerous lesion, but it is a shadow which is difficult to detect by a radiologist because of haze and complicated shape. Therefore, in recent years, a computer aided diagnosis (CAD) system has been developed for the purpose of improving the detection accuracy for early detection and reducing the burden to radiologists. In this paper, we extract the GGO using Deep Convolutional Neural Network (DCNN) based on emphasized images. Before detect a GGO region, we apply preprocessing such as isotropic voxel to the original images, and extraction of the lung area. Next, we remove the vessel and bronchial region by 3D line filter based on Hessian matrix, and extract the initial candidate regions using density gradient, volume and sphericity. Subsequently, we segment the candidate regions, extraction of features, and reducing false positive shadows. Finally we create emphasize images and identify with DCNN using those images. As a result of applying the proposed method to 31 cases on Lung Image Database Consortium (LIDC), we obtained a true positive rate (TP) of 86.05 [%] and false positive number (FP) of 4.81 [/case].

목차

Abstract
1. INTRODUCTION
2. METHODS
3. EXPERIMENTAL RESULTS
4. DISCUSSIONS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001426353