메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kohei TAMAI (Kyushu Institute of Technology) Noriaki MIYAKE (Kyushu Institute of Technology) Humin LU (Kyushu Institute of Technology) Hyoungseop KIM (Kyushu Institute of Technology) Seiichi MURAKAMI (University of Occupational and Environmental Health) Takatoshi AOKI (University of Occupational and Environmental Health) Shoji KIDO (Osaka University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2019
발행연도
2019.10
수록면
1,033 - 1,036 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent years, the number of death due to lung cancer is increasing year by year worldwide. Early detection and early treatment of lung cancer are important. Especially, early detection of the abnormalities on thoracic MDCT images detection of small nodules is required in visual screening. Although a CT apparatus is used for the examination, the burden on the image interpretation doctor is large due to the high performance of the CT, so the diagnostic accuracy may be reduced. In this paper, we propose an image analysis method to detect abnormal shadows from chest CT images automatically. The initial lesion candidate areas are extracted by using temporal subtraction technique that emphasizes temporal change by subtracting from a current image to previous one which is obtained same subject. The image of the area is given as input and classification is performed by CNN (Convolutional Neural Network). In the discrimination experiment based on our proposed method, 90.26 [%] of true positive rates and 13.58 [%] of false positive rates are obtained from the 49 clinical cases.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. EXPERIMENTAL RESULT
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0