메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Reo Takahashi (Kyushu Institute of Technology) Tohru Kamiya (Kyushu Institute of Technology) Takashi Terasawa (University of Occupational and Environmental Health) Takatoshi Aoki (University of Occupational and Environmental Health)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,489 - 1,493 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Lung cancer currently kills the largest number of people in the world, with lung cancer accounting for the highest number of deaths among men and women. Therefore, early detection and treatment are important issues to reduce the number of lung cancer deaths. Genetic testing can confirm the presence or absence of driver gene mutations involved in cancer cell growth and other factors. In the process of identifying the presence or absence of driver gene mutations, lung cancer regions are extracted manually in cooperation with a radiologist. One of the concerns is that manual lung cancer extraction places a heavy burden on the physician who reads the images. Therefore, we propose an automatic extraction of lung tumor regions from chest CT images using deep learning, with the goal of developing a CAD system that reduces the workload of the physician and prevents lesions from being overlooked. We constructed a new model based on U-Net with the addition of CBAM and MultiRes Block. Experimental results on the model using CT images of the chest showed a 4.2% improvement in accuracy for Dice and a 4.6% improvement for IoU compared to the original U-Net model.

목차

Abstract
1. INTRODUCTION
2. Method
3. EXPERIMENT
4. DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088265976