메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제26권 제4호
발행연도
2015.8
수록면
857 - 864 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이터 마이닝은 다양한 형태의 방대한 데이터 집합으로부터 보이지 않는 지식이나 새로운 법칙을 발견한 후, 이를 바탕으로 의사결정 등을 위한 정보로 활용하고자 하는 것이다. 데이터 마이닝 기법중의 하나인 군집 분석은 거리 또는 유사성 측도를 이용하여 집단을 분류하고, 구분된 각 집단의 특성을 파악하기 위한 기법이다. 본 논문에서는 주변 확률이 일부 포함된 확률적 흥미도 측도 기반의 유사성 측도들인 Peirce Ⅰ, Peirce Ⅱ, Cole Ⅰ, Cole Ⅱ, 그리고 이들을 응용한 Park Ⅰ 및 Park Ⅱ에대한 대소 관계를 수식의 증명뿐만 아니라 예제 데이터에 의해서도 규명하였다. 그 결과, Cole Ⅰ과Cole Ⅱ의 측도를 동시에 고려한 Loevinger 측도가 기존의 측도들 중에서는 상한이 되나 Park Ⅰ 및Park Ⅱ를 함께 고려했을 경우에는 동시발생비율, 동시 비발생비율, 그리고 두 가지 형태의 불일치비율의 크기에 따라 변한다는 사실을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001376729