메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제26권 제2호
발행연도
2015.4
수록면
367 - 376 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이터마이닝 기법 중의 하나인 군집분석은 다양한 특성을 지닌 관찰대상에 대해 유사성을 바탕으로 동질적인 군집으로 묶은 후, 동일 군집에 속해 있는 공통된 특성을 조사하는데 이용되는 기법이다. 본 논문에서는 주변 확률을 고려하지 않는 확률적 흥미도 측도 기반 유사성 측도인 Yule I과 II,Michael, Digby, Baulieu, 그리고 Dispersion 측도에 대해 상한 및 하한을 설정함으로써 이들의 대소관계를 규명하였다. 그 결과, 세 가지 유형의 대소 관계가 성립한다는 사실을 수식의 증명뿐만 아니라실제 데이터 및 모의실험 데이터에 의해서도 확인할 수 있었다. 이들 측도들은 각 경계에 있는 측도와는 더욱 더 유사한 값을 가지므로 각 측도의 상한 및 하한은 여러 가지 측도들을 분류하는 도구가 되며, 실제 값의 관점에서 각 측도들의 관계를 알게 되면 주어진 알고리즘의 안정화에 도움이 될 수 있을것이다.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001376254