메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제24권 제6호
발행연도
2013.12
수록면
1,263 - 1,274 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
VaR (value at risk)는 주어진 신뢰수준에서 일정기간 동안 발생할 수 있는 최대손실의 기대치를나타내는 것으로, 현재 금융기관들의 대표적인 위험관리 수단으로 사용되고 있다. 기존의 대다수 연구에서는 수익률의 확률분포를 정규분포라 모형화한 후 VaR을 측정한다. 최근 Chen 등 (2012)은수익률의 확률분포를 비대칭 라플라스 분포라 모형화하고 VaR을 측정하였기도 하였으나, 비대칭 라플라스 분포의 경우 그 모양을 결정하는 최빈값, 비대칭 정도, 분산정도 등을 실제적인 환경에서 제한된 개수의 데이터를 가지고 추정하기가 매우 어렵다는 단점이 있다. 이 논문에서, 우리는 (대칭) 라플라스 분포 모형이 정규분포 모형이나 비대칭 라플라스 분포 모형보다 실제적인 환경에서 VaR을 보다더 정확히 추정해 줌을 주식시장의 실제 데이터와 VaR 초과비율, 기대초과손실, VaR초과편차율 등의 통계지표를 도입하여 입증한다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001384152