메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Wang-Su Jeon (Kyungnam University,) Sang-Yong Rhee (Kyungnam University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.17 No.3
발행연도
2017.9
수록면
170 - 176 (7page)
DOI
10.5391/IJFIS.2017.17.3.170

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Biometrics technology determines the correct identity of a person by extracting human biological or behavioral characteristic data. As the possibility of hacking increases with the development of IT technology, interest in biometrics and authentication technology is greatly increasing. Currently, the most popular authentication technology is fingerprint recognition. For the sake of efficiency, fingerprint recognition is divided into two stages. In the first step, the inputted fingerprint image is subjected to a complicated preprocessing stage, and the fingerprint image is then classified. In the second step, the feature points of the classified fingerprints are extracted and compared with the fingerprint feature points stored in a database. Human beings can easily classify fingerprint patterns without complicated image processing. In this paper, we propose the use of a convolution neural network model combined with an ensemble model and a batch normalization technique after minimizing the number of the quality improvement processes required for a fingerprint image, which operates more similarly to human perception.

목차

Abstract
1. Introduction
2. Conventional Fingerprint Classification Method
3. Proposed Fingerprint Classification Method
4. Experiments and Analysis of the Results
5. Conclusions
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0